3.13.17 \(\int \frac {(a-i a x)^{7/4}}{(a+i a x)^{9/4}} \, dx\) [1217]

Optimal. Leaf size=141 \[ \frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}+\frac {42 x}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}-\frac {42 \sqrt [4]{1+x^2} E\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}} \]

[Out]

4/5*I*(a-I*a*x)^(7/4)/a/(a+I*a*x)^(5/4)+42/5*x/(a-I*a*x)^(1/4)/(a+I*a*x)^(1/4)-28/5*I*(a-I*a*x)^(3/4)/a/(a+I*a
*x)^(1/4)-42/5*(x^2+1)^(1/4)*(cos(1/2*arctan(x))^2)^(1/2)/cos(1/2*arctan(x))*EllipticE(sin(1/2*arctan(x)),2^(1
/2))/(a-I*a*x)^(1/4)/(a+I*a*x)^(1/4)

________________________________________________________________________________________

Rubi [A]
time = 0.02, antiderivative size = 141, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, integrand size = 25, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.200, Rules used = {49, 42, 235, 233, 202} \begin {gather*} -\frac {42 \sqrt [4]{x^2+1} E\left (\left .\frac {\text {ArcTan}(x)}{2}\right |2\right )}{5 \sqrt [4]{a+i a x} \sqrt [4]{a-i a x}}+\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}+\frac {42 x}{5 \sqrt [4]{a+i a x} \sqrt [4]{a-i a x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Int[(a - I*a*x)^(7/4)/(a + I*a*x)^(9/4),x]

[Out]

(((4*I)/5)*(a - I*a*x)^(7/4))/(a*(a + I*a*x)^(5/4)) + (42*x)/(5*(a - I*a*x)^(1/4)*(a + I*a*x)^(1/4)) - (((28*I
)/5)*(a - I*a*x)^(3/4))/(a*(a + I*a*x)^(1/4)) - (42*(1 + x^2)^(1/4)*EllipticE[ArcTan[x]/2, 2])/(5*(a - I*a*x)^
(1/4)*(a + I*a*x)^(1/4))

Rule 42

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(m_), x_Symbol] :> Dist[(a + b*x)^FracPart[m]*((c + d*x)^Frac
Part[m]/(a*c + b*d*x^2)^FracPart[m]), Int[(a*c + b*d*x^2)^m, x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[b*c +
a*d, 0] &&  !IntegerQ[2*m]

Rule 49

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[(a + b*x)^(m + 1)*((c + d*x)^n/(b*(
m + 1))), x] - Dist[d*(n/(b*(m + 1))), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 202

Int[((a_) + (b_.)*(x_)^2)^(-5/4), x_Symbol] :> Simp[(2/(a^(5/4)*Rt[b/a, 2]))*EllipticE[(1/2)*ArcTan[Rt[b/a, 2]
*x], 2], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 233

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Simp[2*(x/(a + b*x^2)^(1/4)), x] - Dist[a, Int[1/(a + b*x^2)^(5
/4), x], x] /; FreeQ[{a, b}, x] && GtQ[a, 0] && PosQ[b/a]

Rule 235

Int[((a_) + (b_.)*(x_)^2)^(-1/4), x_Symbol] :> Dist[(1 + b*(x^2/a))^(1/4)/(a + b*x^2)^(1/4), Int[1/(1 + b*(x^2
/a))^(1/4), x], x] /; FreeQ[{a, b}, x] && PosQ[a]

Rubi steps

\begin {align*} \int \frac {(a-i a x)^{7/4}}{(a+i a x)^{9/4}} \, dx &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}-\frac {7}{5} \int \frac {(a-i a x)^{3/4}}{(a+i a x)^{5/4}} \, dx\\ &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}+\frac {21}{5} \int \frac {1}{\sqrt [4]{a-i a x} \sqrt [4]{a+i a x}} \, dx\\ &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}+\frac {\left (21 \sqrt [4]{a^2+a^2 x^2}\right ) \int \frac {1}{\sqrt [4]{a^2+a^2 x^2}} \, dx}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}+\frac {\left (21 \sqrt [4]{1+x^2}\right ) \int \frac {1}{\sqrt [4]{1+x^2}} \, dx}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}+\frac {42 x}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}-\frac {\left (21 \sqrt [4]{1+x^2}\right ) \int \frac {1}{\left (1+x^2\right )^{5/4}} \, dx}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ &=\frac {4 i (a-i a x)^{7/4}}{5 a (a+i a x)^{5/4}}+\frac {42 x}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}-\frac {28 i (a-i a x)^{3/4}}{5 a \sqrt [4]{a+i a x}}-\frac {42 \sqrt [4]{1+x^2} E\left (\left .\frac {1}{2} \tan ^{-1}(x)\right |2\right )}{5 \sqrt [4]{a-i a x} \sqrt [4]{a+i a x}}\\ \end {align*}

________________________________________________________________________________________

Mathematica [C] Result contains higher order function than in optimal. Order 5 vs. order 4 in optimal.
time = 10.03, size = 70, normalized size = 0.50 \begin {gather*} \frac {i \sqrt [4]{1+i x} (a-i a x)^{11/4} \, _2F_1\left (\frac {9}{4},\frac {11}{4};\frac {15}{4};\frac {1}{2}-\frac {i x}{2}\right )}{11 \sqrt [4]{2} a^3 \sqrt [4]{a+i a x}} \end {gather*}

Antiderivative was successfully verified.

[In]

Integrate[(a - I*a*x)^(7/4)/(a + I*a*x)^(9/4),x]

[Out]

((I/11)*(1 + I*x)^(1/4)*(a - I*a*x)^(11/4)*Hypergeometric2F1[9/4, 11/4, 15/4, 1/2 - (I/2)*x])/(2^(1/4)*a^3*(a
+ I*a*x)^(1/4))

________________________________________________________________________________________

Maple [C] Result contains higher order function than in optimal. Order 5 vs. order 4.
time = 0.18, size = 101, normalized size = 0.72

method result size
risch \(-\frac {8 \left (4 x^{2}+i x +3\right )}{5 \left (x -i\right ) \left (-a \left (i x -1\right )\right )^{\frac {1}{4}} \left (a \left (i x +1\right )\right )^{\frac {1}{4}}}+\frac {21 x \hypergeom \left (\left [\frac {1}{4}, \frac {1}{2}\right ], \left [\frac {3}{2}\right ], -x^{2}\right ) \left (-a^{2} \left (i x -1\right ) \left (i x +1\right )\right )^{\frac {1}{4}}}{5 \left (a^{2}\right )^{\frac {1}{4}} \left (-a \left (i x -1\right )\right )^{\frac {1}{4}} \left (a \left (i x +1\right )\right )^{\frac {1}{4}}}\) \(101\)

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a-I*a*x)^(7/4)/(a+I*a*x)^(9/4),x,method=_RETURNVERBOSE)

[Out]

-8/5*(4*x^2+3+I*x)/(x-I)/(-a*(-1+I*x))^(1/4)/(a*(1+I*x))^(1/4)+21/5/(a^2)^(1/4)*x*hypergeom([1/4,1/2],[3/2],-x
^2)*(-a^2*(-1+I*x)*(1+I*x))^(1/4)/(-a*(-1+I*x))^(1/4)/(a*(1+I*x))^(1/4)

________________________________________________________________________________________

Maxima [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Failed to integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-I*a*x)^(7/4)/(a+I*a*x)^(9/4),x, algorithm="maxima")

[Out]

integrate((-I*a*x + a)^(7/4)/(I*a*x + a)^(9/4), x)

________________________________________________________________________________________

Fricas [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {could not integrate} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-I*a*x)^(7/4)/(a+I*a*x)^(9/4),x, algorithm="fricas")

[Out]

1/5*(2*(I*a*x + a)^(3/4)*(-I*a*x + a)^(3/4)*(5*x^2 - 30*I*x - 21) + 5*(a^2*x^3 - 2*I*a^2*x^2 - a^2*x)*integral
(42/5*(I*a*x + a)^(3/4)*(-I*a*x + a)^(3/4)/(a^2*x^4 + a^2*x^2), x))/(a^2*x^3 - 2*I*a^2*x^2 - a^2*x)

________________________________________________________________________________________

Sympy [F]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \int \frac {\left (- i a \left (x + i\right )\right )^{\frac {7}{4}}}{\left (i a \left (x - i\right )\right )^{\frac {9}{4}}}\, dx \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-I*a*x)**(7/4)/(a+I*a*x)**(9/4),x)

[Out]

Integral((-I*a*(x + I))**(7/4)/(I*a*(x - I))**(9/4), x)

________________________________________________________________________________________

Giac [F(-2)]
time = 0.00, size = 0, normalized size = 0.00 \begin {gather*} \text {Exception raised: RuntimeError} \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a-I*a*x)^(7/4)/(a+I*a*x)^(9/4),x, algorithm="giac")

[Out]

Exception raised: RuntimeError >> An error occurred running a Giac command:INPUT:sage2OUTPUT:Warning, choosing
 root of [1,0,0,0,%%%{-1,[1,0]%%%}+%%%{i,[0,1]%%%}] at parameters values [44,93]ext_reduce Error: Bad Argument
 Typeintegrate

________________________________________________________________________________________

Mupad [F]
time = 0.00, size = -1, normalized size = -0.01 \begin {gather*} \int \frac {{\left (a-a\,x\,1{}\mathrm {i}\right )}^{7/4}}{{\left (a+a\,x\,1{}\mathrm {i}\right )}^{9/4}} \,d x \end {gather*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a - a*x*1i)^(7/4)/(a + a*x*1i)^(9/4),x)

[Out]

int((a - a*x*1i)^(7/4)/(a + a*x*1i)^(9/4), x)

________________________________________________________________________________________